DISEÑO DE EXPERIMENTOS

DISEÑO DE EXPERIMENTOS

GRADO EN ESTADÍSTICA PLAN 2009

1. Datos de la asignatura

(Fecha última modificación: 21-07-17 21:38)
Código
100722
Plan
2009
ECTS
6.00
Carácter
OBLIGATORIA
Curso
3
Periodicidad
Primer Semestre
Área
ESTADÍSTICA E INVESTIGACIÓN OPERATIVA
Departamento
Estadística
Plataforma Virtual

Campus Virtual de la Universidad de Salamanca

Datos del profesorado

Profesor
Juan Manuel Rodríguez Díaz
Grupo/s
1
Departamento
Estadística
Área
Estadística e Investigación Operativa
Centro
Fac. Ciencias
Despacho
D1102
Horario de tutorías

A convenir con el profesor

URL Web
-
E-mail
juanmrod@usal.es
Teléfono
923 29-4500, Ext. 6992

2. Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia.

La asignatura pertenece al módulo “Modelos Lineales y Análisis Multivariante”, formado por las asignaturas “Análisis Multivariante”, “Modelos Lineales” y “Diseño de Experimentos”, todas ellas de carácter obligatorio, las dos primeras en el segundo semestre del curso 2º y la última en el primer semestre del tercer curso.

Papel de la asignatura.

El carácter obligatorio de las asignaturas que conforman el Bloque formativo denota su importancia dentro del plan de estudios. Las tres asignaturas se ocupan del estudio de diversos modelos que pueden caracterizar los datos: el “Análisis Multivariante” intenta simplificar aquellos que dependen de multitud de factores para lograr un mejor estudio e interpretación del modelo, mientras “Modelos Lineales” se ocupa de aquellos modelos que son lineales en los parámetros y “Diseño de Experimentos” busca los puntos en los que se deberían tomar las observaciones para que las estimaciones de los parámetros obtenidas a partir de éstas tengan propiedades interesantes (independencia, varianza mínima,...).

Perfil profesional.

Todas las actividades asociadas con planear y realizar estudios de investigación tienen implicaciones estadísticas. El experimento (en particular el diseño del mismo) constituye la base para la estructura de un estudio de investigación, y a su vez esa estructura define la función del estudio. Si la estructura es razonable, el estudio funcionará de manera adecuada y se obtendrá la información para la que fue diseñado. Si la estructura tiene fallos, el estudio no funcionará bien y presentará información incompleta o errónea. Los principios estadísticos son los asociados con la recolección de aquellas observaciones que proporcionen la mayor cantidad de información para el estudio de investigación de una manera eficiente, y por tanto se hacen necesarios en cualquier disciplina.

En general se puede decir que el conocimiento de la asignatura resulta fundamental en todo tipo de saber que necesite realizar experimentos para obtener información acerca de los fenómenos objeto de estudio, lo que ocurre en la inmensa mayoría. Como ejemplos se puede citar cualquier ingeniería o industria, o más concretamente áreas tales como Agricultura, Biología, Farmacología, Medicina, Economía, Psicología, Química, Sociología, etc.

3. Recomendaciones previas

Se recomienda haber cursado previamente la asignatura `Estadística Matemática' o al menos tener nociones elementales de distribuciones de probabilidad, intervalos de confianza y contrastes de hipótesis

4. Objetivo de la asignatura

Objetivos Generales:

Diseñar adecuadamente el proceso de adquisición y tratamiento de los datos.

Ser capaz de identificar o crear el modelo adecuado a cada caso.

Capacidad para manipular computacionalmente los modelos, aprovechando la potencia de los métodos estadísticos, de optimización etc., y realizar el análisis de los modelos y de los resultados obtenidos.

Extracción de conclusiones: percibir la naturaleza de los problemas e interpretar las soluciones proporcionadas por los modelos correspondientes.

Capacidad de comunicar los resultados, las conclusiones de los modelos y las soluciones propuestas de una forma inteligible para el resto de la empresa u organismo, para conseguir que sean aceptadas e implantadas por los responsables de la toma de decisiones.

Llevar a cabo un aprendizaje continuado a lo largo de toda la vida profesional, y estar siempre dispuesto a abordar problemas nuevos con nuevas herramientas.

Objetivos Específicos:

Elegir y utilizar el método de análisis más adecuado en una investigación en función de los objetivos de la misma

Aplicar los principales métodos de análisis de la varianza.

Conocer los métodos clásicos de diseño de experimentos y la metodología de Taguchi.

Conocer los distintos métodos de análisis de Superficies de Respuesta.

 

5. Contenidos

Teoría.

  • Diseño completamente aleatorizado. Replicaciones. Diseño en bloques aleatorizados.
  • Cuadrados latino y grecolatino. Diseño en bloques aleatorizados incompleto. Diseños jerárquico y anidado.
  • Diseños factoriales a 2 y 3 niveles. Fracciones de diseños factoriales. Métodos de Taguchi.
  • Superficies de respuesta.

Práctica.

Prácticas realizadas con ordenador para resolver problemas correspondientes a los temas teóricos descritos anteriormente:

  • Identificación de los factores importantes mediante un experimento
  • ANOVA de uno y varios factores.
  • Diseños en bloques aleatorizados. Cuadrados latinos y grecolatinos
  • Diseños factoriales a 2 niveles. Fracciones de diseños factoriales.

Superficies de respuesta.

6. Competencias a adquirir

Específicas.

  • Adquirir los conocimientos estadísticos necesarios para diseñar adecuadamente una investigación y realizar estudios descriptivos e inferenciales, utilizando las herramientas informáticas más adecuadas.
  • Proponer, analizar, validar e interpretar modelos de situaciones reales utilizando las técnicas estadísticas más adecuadas a los fines que se persigan.
  • Adquirir la capacidad para detectar y modelizar el azar en problemas reales. Distinguir entre método estadístico y razonamiento determinista.
  • Capacitar para el análisis de datos procedentes de diferentes ámbitos: técnico, biosanitario, socio-jurídico o económico mediante técnicas estadísticas.

Transversales.

  • Demostrar poseer y comprender conocimientos en Técnicas Estadísticas partiendo de la base de la educación secundaria general, a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de la Estadística.
  • Saber aplicar sus conocimientos a su trabajo de una forma profesional y poseer las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro del área de Estadística.
  • Tener la capacidad de reunir e interpretar datos de diversas áreas de estudio para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
  • Comprender y utilizar el lenguaje estadístico. Adquirir la capacidad para analizar y sintetizar los problemas de los distintos campos de aplicación de la Estadística.
  • Desarrollar la capacidad para el aprendizaje autónomo de nuevos conocimientos y técnicas, para el razonamiento crítico y para la transmisión de los conocimientos estadísticos adquiridos en lengua nativa y extranjera.
  • Adquirir la capacidad de comunicación con equipos multidisciplinares en los que el uso de la Estadística juega un papel relevante en la toma de decisiones.
  • Conocer y utilizar diferentes herramientas informáticas de uso común en el ámbito de la Estadística. Gestionar la información disponible de manera óptima.

Adquirir la capacidad de adaptación a nuevas situaciones que puedan requerir la mejora o creación de técnicas estadísticas en términos de otras ya conocidas.

7. Metodologías

Los contenidos teóricos se introducirán mediante clases magistrales, en las que se fomentará la participación del estudiante cuando la naturaleza y dificultad de la materia lo permitan. La enseñanza magistral se complementará con clases de resolución de problemas (éstas sí con una participación mayoritaria de los estudiantes) y prácticas de ordenador que permitan resolver rápidamente los ejercicios planteados a partir de los temas teóricos. Se seguirá esencialmente el manual recomendado, complementado con el material de las transparencias que los profesores exponen en clase, y que se proporcionará a los estudiantes a través de la plataforma virtual Studium. Dicha plataforma servirá de apoyo y enlace entre los profesores y los estudiantes (recogida de material teórico y práctico -transparencias, enunciados de ejercicios, prácticas de ordenador, tablas estadísticas-, entrega de trabajos, autoevaluación, etc.) Los seminarios tutelados servirán para afianzar los conocimientos mediante la realización y exposición de trabajos individuales o en grupo, resolución de problemas o prácticas de ordenador, etc., siempre exponiendo públicamente las dificultades a fin de que su resolución sirva a los compañeros, y siempre bajo la supervisión de los profesores. Éstos en todo caso intentarán que en lo posible sean los propios estudiantes los que realicen entre sí una labor de auto-resolución de sus propias dudas. En cualquier caso, siempre será necesaria la realización por parte del estudiante de una labor personal de estudio y asimilación de los contenidos teóricos, así como de resolución de problemas planteados y preparación de los trabajos propuestos, a fin de alcanzar las competencias previstas.

El software utilizado será esencialmente el programa SPSS quizá apoyado puntualmente con el programa Mathematica; programas para los que la Universidad posee licencia de campus. Se fomentará el uso del software libre (por ejemplo R-project) que los propios estudiantes pueden utilizar en su entorno particular sin necesidad de adquisición de licencias.

8. Previsión de Técnicas (Estrategias) Docentes

9. Recursos

Libros de consulta para el alumno.

  • MONTGOMERY, D. C. (2005): “Design and analysis of experiments”. Wiley.
  • PEÑA SÁNCHEZ DE RIVERA, D. (1992): “Estadística, Modelos y Métodos: 2. Modelos Lineales y Series Temporales”. Alianza Editorial. Madrid.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

  • MYERS, R.H. and MONTGOMERY D.C. (2002): “Response Surface Methodology”. John Wiley & Sons, New York.
  • PEÑA SÁNCHEZ DE RIVERA, D. (2002). Regresión y Diseño de Experimentos. Alianza Editorial, Madrid.
  • http://studium.usal.es

10. Evaluación

Consideraciones generales.

La nota final del estudiante será una media ponderada de las obtenidas durante el curso a través de los trabajos y exposiciones realizadas en el aula, las prácticas con ordenador y el examen final.

Criterios de evaluación.

Evaluación continua: los trabajos propuestos y las exposiciones en clase supondrán un 10% de la nota final; la realización de prácticas en aula de Informática supondrá un 20%.

El examen final consistirá en una prueba teórico-práctica que supondrá un 70% de la nota final, y en la que será necesario alcanzar un mínimo de 3 puntos sobre 10 para que se pueda promediar con las otras notas. La nota de la evaluación continua conseguida en la primera convocatoria será la misma que se tendrá para la segunda, pudiendo recuperar en ésta última sólo la nota del examen final.

Instrumentos de evaluación.

Pruebas escritas y exposiciones orales en clase:

  • Se propondrán problemas y prácticas para resolver que el alumno debe entregar y/o exponer en el aula.
  • La prueba escrita final se realizará en la fecha prevista en la planificación docente

Recomendaciones para la evaluación.

Se recomienda la asistencia y participación activa en todas las actividades programadas y el uso de las tutorías, así como estudiar la asignatura de forma regular desde el principio de curso y consultar a los profesores las dudas que se planteen en cada momento.

Recomendaciones para la recuperación.

Se realizará un examen de recuperación en la fecha prevista en la planificación docente.

11. Organización docente semanal