ALGEBRA LINEAL Y GEOMETRIA I

ALGEBRA LINEAL Y GEOMETRIA I

GRADO EN FISICA

1. Datos de la asignatura

(Fecha última modificación: 21-07-17 21:38)
Código
100803
Plan
ECTS
6.00
Carácter
BÁSICA
Curso
1
Periodicidad
Primer Semestre
Área
ÁLGEBRA
Departamento
Matemáticas
Plataforma Virtual

Campus Virtual de la Universidad de Salamanca

Datos del profesorado

Profesor
Daniel Hernández Serrano
Grupo/s
todos
Departamento
Matemáticas
Área
Geometría y Topología
Centro
Fac. Ciencias
Despacho
M332 (Matemáticas)
Horario de tutorías

Lunes de 12-13h y de 16-18h

URL Web
-
E-mail
dani@usal.es
Teléfono
923 29 44 60 Ext:1553

2. Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia.

Es una materia (= asignatura) que forma parte del módulo Métodos Matemáticos de la Física que a su vez está compuesto por 6 asignaturas.

Papel de la asignatura.

Es una asignatura que pertenece al bloque de formación básica dentro del Grado en Física

Perfil profesional.

Al ser una asignatura de carácter básico, es fundamental en cualquier perfil vinculado al Grado en Física

3. Recomendaciones previas

ASIGNATURAS QUE CONTINUAN EL TEMARIO:

  • Álgebra Lineal y Geometría II

ASIGNATURAS QUE SE RECOMIENDA CURSAR SIMULTANEAMENTE:

Análisis Matemático I

Física I Física II

ASIGNATURAS QUE SE RECOMIENDA HABER CURSADO PREVIAMENTE:

4. Objetivo de la asignatura

  • Conocer los aspectos básicos de la Geometría Lineal que se usan en Física.
  • Utilizar el cálculo matricial elemental.
  • Modelizar como espacios vectoriales conjuntos de polinomios, matrices y funciones.
  • Saber operar con vectores, bases, coordenadas y aplicaciones lineales.
  • Saber realizar cambios de base.
  • Reconocer y calcular las distintas ecuaciones de las subvariedades afines.
  • Interpretar, discutir y resolver sistemas lineales, así como establecer su relación con las posiciones relativas de las subvariedades afines

5. Contenidos

Teoría.

Tema 1. Espacios y subespacios vectoriales. Dependencia e independencia lineal. Bases y dimensión. Tema 2. Operaciones con subespacios. Subespacios suplementarios.

Tema 3. Aplicaciones lineales. Núcleo e imagen de una aplicación lineal. Tipos de aplicaciones lineales. Tema 4. Aplicaciones lineales en coordenadas: matrices. Sistemas lineales. Cambios de base.

Tema 5. Funciones coordenadas. Espacio dual. Subespacio incidente. Ecuaciones paramétricas e implícitas de un subespacio. Tema 6. Geometría afín.

6. Competencias a adquirir

Básicas / Generales.

Competencias Básicas del módulo Métodos Matemáticos de la Física recogidas en la memoria del Grado en Física por la Universidad de Salamanca:

1.  CB-5: Haber desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores en Física con un alto grado de autonomía.

Competencias Generales del módulo Métodos Matemáticos de la Física recogidas en la memoria del Grado en Física por la Universidad de Salamanca:

CG-2: Incrementar la capacidad de organización y planificación con el objeto de resolver con éxito el problema analizado.

CG-4: Ser capaz de plantear y resolver problemas físicos obteniendo una descripción no sólo cualitativa sino también cuantitativa y con el grado de precisión que sea requerido del fenómeno físico en cuestión.

CG-5: Aprender de manera autónoma nuevos conocimientos y técnicas

Específicas.

Competencias Específicas del módulo Métodos Matemáticos de la Física recogidas en la memoria del Grado en Física por la Universidad de Salamanca:

CE-1: Tener una buena comprensión de las teorías físicas más importantes, localizando en su estructura lógica y matemática, su soporte experimental y el fenómeno físico que puede ser descrito a través de ellos.

CE-3: Saber formular las relaciones funcionales y cuantitativas de la Física en lenguaje matemático y aplicar dichos conocimientos a la resolución explícita de problemas de particular interés.

CE-5: Comprender y dominar el uso de los métodos matemáticos y numéricos más comúnmente utilizados.

CE-8: Ser capaz de trabajar en un grupo interdisciplinario, de presentar mediante medios escritos y orales su propia investigación o resultados de búsqueda bibliográficos tanto a profesionales como a público en general.

7. Metodologías

La metodología general no difiere mucho entre las distintas asignaturas del módulo Métodos Matemáticos de la Física ya que, fundamentalmente, se insistirá en la aplicación práctica a la Física de los conceptos y técnicas matemáticas que se desarrollarán en las mismas. Este carácter operativo y de dependencia hacia las necesidades matemáticas de las restantes asignaturas del Grado, guiará en todo momento la docencia de las materias de este módulo. No obstante, el desarrollo de la asignatura se hará sin perder el objetivo de que los estudiantes adquieran también otras competencias básicas y específicas del módulo.

En cuanto a las ACTIVIDADES PRESENCIALES, esta asignatura dispondrá de tres sesiones semanales de clases teóricas y prácticas de 1 hora de duración con el grupo completo y cuatro sesiones de 1 hora, Seminarios, una con cada uno de los cuatro subgrupos en los que se dividirá el grupo. También se realizarán periódicamente actividades tutoriales en grupos pequeños, en el horario previsto para Tutorías.

Clases teóricas. El profesor explicará y detallará los contenidos teóricos de cada tema, pondrá de manifiesto su aplicación con algunos ejemplos y propondrá ejercicios para resolver en las clases prácticas. Aunque se hará un desarrollo muy práctico de la asignatura con una exposición operativa de los diferentes métodos matemáticos de carácter lineal, se fomentará también que el estudiante comprenda las razones y justificaciones matemáticas del uso de las mismas.

Clases prácticas. Las clases prácticas consistirán en la resolución de los problemas propuestos al finalizar cada clase teórica. Hay que conseguir una estrecha relación entre los problemas y la teoría, pues es completamente utópico esperar que los alumnos aprendan matemáticas sin que resuelvan numerosos ejercicios, tanto en su sitio como en la pizarra. El desarrollo de ejercicios o de cuestiones teórico-prácticas en la pizarra, por parte del alumno, es fundamental no sólo para que el profesor constate su evolución sino para que éste aprenda a exponer con rigor sus conocimientos y a expresarse con corrección ante los demás.

Al finalizar cada tema el profesor colgará en Studium los archivos de teoría, problemas, cuestiones y ejercicios tipo test que el alumno deberá ir estudiando, resolviendo y completando.

Seminarios. El profesor propone una lista de ejercicios, en los que se desarrollarán los ejemplos y problemas de las clases prácticas. Los estudiantes realizarán estos ejercicios en clase, siempre bajo la supervisión del profesor, que resolverá las dudas que pudieran plantearse. Algunos Seminarios se impartirán en un aula de Informática para que los alumnos puedan utilizar software de cálculo numérico y simbólico.

Actividades tutoriales: además de las tutorías individuales se realizarán tutorías en grupos pequeños para que los alumnos planteen las dudas y dificultades que van apareciendo en el desarrollo de la asignatura.

Además de las actividades no presenciales correspondientes al trabajo autónomo que el alumno deberá desarrollar para conseguir los objetivos de la asignatura se realizarán:

ACTIVIDADES NO PRESENCIALES del tipo: Preparación de ejercicios, pequeños documentos con cuestiones teórico-prácticas, cuestionarios on-line y otros trabajos que cada estudiante subirá como tarea a la plataforma Studium. Aquí será fundamental la ayuda del profesor por medio de la tutoría on-line.

8. Previsión de Técnicas (Estrategias) Docentes

9. Recursos

Libros de consulta para el alumno.

M. Castellet, I. Llerena. Álgebra lineal y geometría. Ed. Reverté. Barcelona(1991)

E. Hernández. Álgebra y Geometría. Addison-Wesley. Madrid (1994)

D.C. Lay.  Álgebra  lineal y sus aplicaciones. Ed. Pearson (2007)

J. Burgos. Álgebra lineal y geometría. Alhambra Universidad (1990)

E. Espada Bros. Problemas resueltos de Álgebra. Ed. Eunibar (1983)

10. Evaluación

Consideraciones generales.

Se evaluará la adquisición de las competencias previstas por medio de las actividades de evaluación continua y de la prueba escrita final.

Criterios de evaluación.

Tanto en los trabajos como en las pruebas escritas se valorará la correcta utilización de los conceptos y propiedades, las justificaciones teóricas necesarias para el desarrollo de las respuestas, así como la claridad y el rigor en la exposición y la precisión en los cálculos y notaciones.

Los pesos respectivos en la calificación serán:

Trabajos: Su valoración supondrá un 10% de la nota total de la asignatura. Prueba escrita parcial: Supondrán un 30% de la nota total de la asignatura. Prueba escrita final: Supondrá un 60% de la nota total de la asignatura.

Para poder superar la asignatura se requiere que la calificación obtenida en esta prueba sea al menos de 3/10.

Instrumentos de evaluación.

Se utilizarán los relativos a las actividades de:

Evaluación continua

  • Trabajos. Entrega de ejercicios, pequeños documentos con cuestiones teórico-prácticas, cuestionarios on-line y otros trabajos que cada estudiante subirá como tarea a la plataforma Studium
  • Prueba escrita parcial. Podrá constar de cuestiones teórico-prácticas, ejercicios cortos y preguntas tipo test. Su duración será de 1 hora.
  • Prueba escrita final. Constará de dos partes:
  • La primera parte estará formada por cuestiones teórico-prácticas en las que el alumno tendrá que razonar y expresar correctamente sus respuestas utilizando los conceptos necesarios y desarrollando las demostraciones que se precisen.
  • En la segunda parte se resolverán dos problemas, explicando con claridad su planteamiento y desarrollo. Tendrá una duración superior a la de la prueba escrita realizada durante el cuatrimestre.

 

Si algún estudiante, por circunstancias debidamente justificadas, no pudiera seguir la evaluación continua podrá realizar una prueba escrita el mismo día de la Prueba escrita final que englobará todos los contenidos teóricos y prácticos incluidos los planteados para realizar los trabajos y cuya duración será de cuatro horas.

Recomendaciones para la evaluación.

Para la adquisición de las competencias previstas en esta materia se recomienda la asistencia y participación activa en todas las actividades programadas.

La realización de los ejercicios tipo test y de los cuestionarios on-line programados favorecerán la correcta aplicación de los conceptos teóricos   y la precisión en los cálculos, servirán para relacionar las diferentes partes de la asignatura y su aplicación a otras disciplinas y fomentarán la autoevaluación.

Recomendaciones para la recuperación.

Se realizará una Prueba escrita extraordinaria que constará de una parte de teoría y otra de problemas cuyos pesos respectivos serán del 40% y del 60% de la nota de la prueba. Englobará todos los contenidos teóricos y prácticos incluidos los planteados para realizar los trabajos propuestos durante el curso. Tendrá una duración de cuatro horas.

11. Organización docente semanal