INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD

Grado en Estadística- Plan 2016

1. Datos de la asignatura

(Fecha última modificación: 21-07-17 21:57)
Código
108402
Plan
2016
ECTS
6.00
Carácter
OBLIGATORIA
Curso
1
Periodicidad
Primer Semestre
Área
ESTADÍSTICA E INVESTIGACIÓN OPERATIVA
Departamento
Estadística
Plataforma Virtual

Campus Virtual de la Universidad de Salamanca

Datos del profesorado

Profesor
María Jesús Rivas López
Grupo/s
sin nombre
Departamento
Estadística
Área
Estadística e Investigación Operativa
Centro
Fac. Ciencias
Despacho
Edif. Ciencias D1509
Horario de tutorías

Lunes a viernes de 13 a 14 horas

URL Web
-
E-mail
chusrl@usal.es
Teléfono
670620488

2. Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia.

Probabilidad

Papel de la asignatura.

Desarrollar un primer curso de Probabilidad que tendrá su continuación natural en “Cálculo de Probabilidades” de Segundo .

Perfil profesional.

Profesiones relacionadas con las ciencias de la salud, economía, industria y también para docencia en Bachillerato.

3. Recomendaciones previas

Las generales para acceder al Grado de Estadística.

4. Objetivo de la asignatura

GENERALES:

Conocer la naturaleza, métodos y fines de la Probabilidad junto con cierta perspectiva histórica de su desarrollo.

Reconocer la necesidad del manejo de Probabilidades para tratar científicamente aquéllas situaciones en las que interviene el azar o exista incertidumbre.

Reconocer a la Probabilidad como parte integrante de la Educación y la Cultura.

Desarrollar las capacidades analíticas y de abstracción, la intuición y el pensamiento lógico, riguroso y crítico a través del estudio de la Probabilidad.

Capacitar para la utilización de los conocimientos teóricos y prácticos adquiridos en la definición y planteamiento de problemas y en la búsqueda de sus soluciones tanto en contextos académicos como profesionales.

Preparar para posteriores estudios especializados, tanto en una disciplina estadística como en cualquiera de las ciencias que requieran buenos fundamentos probabilísticos.

ESPECÍFICOS:

Que el alumno conozca, comprenda y maneje las nociones básicas de probabilidad, de manera que  sepa interpretar correctamente los resultados procedentes de variables aleatorias que le sean presentados.

Comprender y manejar los conceptos de variable y vector aleatorios, sabiendo utilizarlos en la resolución de problemas reales.

Desarrollar el entendimiento de la Probabilidad como medida básica de incertidumbre en los fenómenos aleatorios.

5. Contenidos

Teoría.

TEMA 1. COMBINATORIA.- Introducción, el problema de contar. Números combinatorios. Variaciones ordinarias y con repetición. Permutaciones ordinarias y con repetición. Combinaciones ordinarias y con repetición.

TEMA 2. Modelización de Situaciones Aleatorias.- Situaciones deterministas y aleatorias, re­sultados, espacio muestral. Sucesos, operaciones con sucesos. Asignación clásica de pro­ba­bi­li­da­des, regla de Laplace. Asignación estadística de la probabilidad, ley de la estabilidad de las fre­cuen­cias relativas. Métodos geométricos de asignación de probabilidades. Axiomas de la Pro­ba­bilidad. Al­gunas consecuencias de los axiomas.

TEMA 3. Probabilidad Condicionada.- Definición de probabilidad condicionada. De­pen­den­cia e in­de­pendencia de sucesos. Regla del Producto. Teoremas de la Probabilidad Total y de Bayes.

TEMA 4. Variables Aleatorias.- Concepto de variable aleatoria. Función de distribución, propiedades. Tipos de variables y distribuciones, funciones de densidad.

TEMA 6. Modelos Discretos de Probabilidad.- Variables y distribuciones discretas, función de probabilidad, función de distribución.

TEMA 7. Variables multidimensionales.- Variables aleatorias bi­di­men­sionales, distribuciones conjunta, marginales y condicionadas. Generalización a variables alea­to­rias multivariantes.

6. Competencias a adquirir

Específicas.

Conocer y saber calcular el número de las agrupaciones de elementos más usuales.

Conocer las nociones y distribuciones básicas en Probabilidad.

Calcular probabilidades y reconocer situaciones reales en las que aparecen las distribuciones probabilísticas más usuales.

Manejar variables y vectores aleatorios y conocer su utilidad en la modelización de fenómenos reales.

Transversales.

INSTRUMENTALES:

Capacidad de análisis y síntesis.

Capacidad de organización y planificación.

Capacidad de gestión de la información.

Resolución de problemas.

Toma de decisiones a partir de los resultados obtenidos.

INTERPERSONALES:

Trabajo en equipo.

Razonamiento crítico.

Compromiso ético.

Habilidades en las relaciones interpersonales.

SISTÉMICAS:

Aprendizaje autónomo.

Motivación por la calidad del aprendizaje.

7. Metodologías

Se expondrá el contenido teórico de los temas a través de clases presenciales que servirá para fijar los conocimientos ligados a las competencias previstas y dar paso a clases prácticas de resolución de problemas, en los que se aplicarán las definiciones, propiedades y teoremas expuestos en las clases teóricas, utilizando, cuando sea conveniente, medios informáticos, de modo que en las clases prácticas los estudiantes se inicien en las competencias previstas.

A partir de las clases teóricas y prácticas se propondrá a los alumnos la realización de trabajos personales sobre teoría y problemas, para cuya realización tendrán el apoyo del profesor en seminarios tutelados. En esos seminarios los estudiantes podrán compartir con sus compañeros y con el profesor las dudas que encuentren, obtener solución a las mismas y comenzar a desempeñar por si mismos las competencias de la materia.

Además, los estudiantes tendrán que desarrollar por su parte un trabajo personal de estudio y asimilación de la teoría, resolución de problemas propuestos y preparación de los trabajos propuestos, para alcanzar las competencias previstas. De ello tendrán que responder, exponiendo sus trabajos ante el profesor y el resto de compañeros y comentándolos luego en una tutoría personal entre estudiante y profesor, así como realizando exámenes de teoría y resolución de problemas.

8. Previsión de Técnicas (Estrategias) Docentes

9. Recursos

Libros de consulta para el alumno.

Albajar, Ramón Ardanuy, ayJosé Manuel Sánchez Santos. Introducción al análisis combinatorio. Ed. Hesperides,1995.

LASALA CALLEJA P. (1996): “Introducción al Cálculo de Probabilidades” y “Problemas Resueltos de Cálculo de Probabilidades”, Prensas Universitarias de Zaragoza, Colección de Textos Docentes

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

ARDANUY R. y M.M. SOLDEVILLA (1992): “Estadística Básica”, Ed. Hespérides, Salamanca.

CRAMÉR H. (1968): “Elementos de la Teoría de Probabilidades”, Ed. Aguilar, Madrid.

LIPSCHUTZ (2001): “Probabilidad”. Ed. Mc Graw-Hill

MEYER P.L. (1992): “Probabilidad y Aplicaciones Estadísticas”, Ed. Addison-Wesley Iberoamericana.

ZOROA TEROL P. y ZOROA ALONSO N. (2008): “Elementos de Probabilidades”. Ed. D.M., Murcia

10. Evaluación

Consideraciones generales.

Será el resultado de una ponderación basada en el desarrollo de cuestiones y ejercicios planteados a los alumnos durante el curso y de la nota obtenida en un examen escrito de teoría y problemas, en el que habrá que sacar, al menos, 3 puntos sobre 10.

Criterios de evaluación.

Las cuestiones y ejercicios planteados a los alumnos durante el curso supondrán un 15% de la nota final.

Las pruebas puntuables de evaluación continua supondrán un 15% de la nota final.

La evaluación final será por medio de prueba escrita que constará de una parte teórica que su­pon­drá un 30% de la nota final, y de una parte práctica (resolución de problemas) a la que co­rres­ponderá el 40% restante.

Instrumentos de evaluación.

Pruebas escritas.

Recomendaciones para la evaluación.

Estudiar la asignatura de forma regular desde el principio.

Preparar la teoría simultáneamente con la realización de problemas.

Consultar a la profesora las dudas que se tengan.

Recomendaciones para la recuperación.

Preparar la teoría simultáneamente con la realización de problemas.

Consultar a la profesora las dudas que se tengan.

11. Organización docente semanal