Guías Académicas

RECURSOS TECNOLÓGICOS PARA LA TRADUCCIÓN

RECURSOS TECNOLÓGICOS PARA LA TRADUCCIÓN

GRADO EN TRADUCCIÓN E INTERPRETACIÓN

Curso 2021/2022

1. Datos de la asignatura

(Fecha última modificación: 27-05-21 14:09)
Código
101430
Plan
2017
ECTS
6.00
Carácter
OBLIGATORIA
Curso
3
Periodicidad
Segundo Semestre
Idioma
ESPAÑOL
Áreas
LENGUAJES Y SISTEMAS INFORMÁTICOS
TRADUCCIÓN E INTERPRETACIÓN
Departamentos
Informática y Automática
Traducción e Interpretación
Plataforma Virtual

Campus Virtual de la Universidad de Salamanca

Datos del profesorado

Profesor/Profesora
Emilio Rodríguez Vázquez de Aldana
Grupo/s
1
Centro
Fac. Traducción y Documentación
Departamento
Informática y Automática
Área
Lenguajes y Sistemas Informáticos
Despacho
1
Horario de tutorías
Por determinar.
URL Web
-
E-mail
aldana@usal.es
Teléfono
923294580. Ext: 3030

2. Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia.

Formación instrumental

Papel de la asignatura.

A nivel temporal, es la tercera asignatura de su bloque formativo. Las destrezas y la comprensión de la asignatura “Informática básica” se considera el sustrato tecnológico necesario de ésta. Por otro lado, esta asignatura aporta tanto habilidades como conocimiento conceptual y práctico para las asignaturas “Localización (inglés)” y “Postedición”, del mismo bloque formativo y optativa y “Gestión terminológica y de proyectos”, obligatoria de 4º curso. Destacar que en esta materia se pretende preparar al alumno en el proceso técnico de la traducción de documentos electrónicos simulando, fundamentalmente, la realidad profesional de un “freelance”, mientras que en una parte de la obligatoria de 4º, el proceso de la traducción se aborda recreando el entorno de trabajo entre un equipo de traductores y un gestor de proyecto.

Perfil profesional.

Esta asignatura atiende los siguientes perfiles profesionales:

  • traductor generalista
  • lexicógrafo, terminólogo y gestor de proyectos lingüísticos

3. Recomendaciones previas

Haber cursado la asignatura “Informática Básica”

4. Objetivo de la asignatura

  • Sistematizar el proceso técnico de la traducción de documentos electrónicos con las herramientas profesionales de Traducción Asistida por Ordenador (TAO, en inglés conocidas como Computer-Aided Translation o CAT Tools).
  • Llevar a destino con una o varias herramientas de TAO diferentes formatos de documentos (DOCX, ODT, PDF, HTML, ePUB, etc.).
  • Adquirir habilidades en la gestión, organización y mantenimiento de las memorias de traducción.
  • Integrar motores de traducción automática desde una TAO.
  • Aprender a utilizar otras herramientas informáticas específicamente ideadas para el traductor: alineadores de documentos a nivel de párrafo/oración y conversores de formatos.
  • Comprender la estructura de los documentos XML y, conocer los formatos estándar propuestos por la industria de la localización. Fundamentalmente, TMX y XLIFF.
  • Adquirir conciencia de la necesidad y utilidad de los estándares en los procesos de traducción de documentos en entornos informáticos.
  • Familiarizarse con las propuestas y la terminología vinculada a la traducción automática basada en reglas, la traducción automática estadística y la traducción automática neuronal.
  • Comprender, de forma básica, el sustrato de la traducción automática neuronal
  • Conocer las razones del uso creciente de la posedición tras la traducción automática.

5. Contenidos

Teoría.

Contenido teórico

  1. Sistemas de Memorias de Traducción
    • Componentes básicos
    • Flujo de información en los Sistemas de Memoria de Traducción
    • La recuperación de traducciones y el aprovechamiento de la memoria
    • Gestión, mantenimiento e intercambio de memorias de traducción
    • Últimas tendencias: la integración con sistemas de traducción automática
  2. Introducción a XML y los estándares en la industria de la localización
    • Nociones elementales de XML
    • Estándares basados en XML para el traductor.
    • Conocimiento básico de TMX y XLIFF
  3. Otras herramientas específicas para el traductor
    • Alineadores de documentos a nivel de oración
    • Conversores del formato original del documento que traducir a formato bilingüe y vuelta.
  4. Corpus, tipos de Corpus y Corpus paralelos. Distribuidores de Corpus.
  5. La traducción automática (TA)
    • Historia de la TA
    • Nociones básicas sobre los sistemas basados en reglas y los basados en corpus
    • Acercamiento al funcionamiento de los sistemas de traducción automática neuronal

Práctica.

Contenido práctico

El programa práctico de esta asignatura tiene como objetivo fundamental la sistematización y comprensión del proceso técnico de la traducción utilizando un TMS.

Usaremos durante buena parte de las prácticas la herramienta de TAO SDL Trados (la versión a utilizar se concretará al inicio del curso en función de la disponibilidad de licencias por parte de la Facultad).

  1. Nuestro primer encargo de traducción de un documento utilizando una TAO.
  2. Creación de un proyecto de traducción de varios documentos de diferentes formatos.
  3. Traducción de documentos en formato PDF.
  4. Traducción de ficheros HTML.
  5. Traducción de libros en formato electrónico (ePUB)
  6. Alineación de documentos
  7. Conversión de información multilingüe a diferentes formatos: TMX, CSV, Ficheros paralelos.
  8. Gestión de memorias de traducción. Importación y exportación.
  9. Adquisición de corpus paralelos en formato TMX e integración en los proyectos de traducción.
  10. Integración de motores traducción automática online en nuestra de TAO: DeepL, Google Translate
  11. Integración de motores de traducción automática “abiertos” en nuestra TAO: descarga de modelos y adaptación al dominio

6. Competencias a adquirir

Específicas.

  • Comprensión y dominio del proceso de traducción de un encargo con un TMS
  • Dominio en la gestión de las memorias de traducción: exportación, importación y mantenimiento.
  • Conocimiento de los productos tipo TMS disponibles en el mercado actual y de las modalidades de distribución: de Escritorio y en “nube”.
  • Uso de otras herramientas específicas de los profesionales de la traducción: alineadores de documentos paralelos, conversores de formato.
  • Conocimiento de los estándares basados en XML vinculados con el mundo profesional de la traducción. TMX y XLIFF, fundamentalmente.
  • Comprensión de las propuestas y los modelos de Traducción Automática
  • Asimilación del proceso de descarga de modelos de traducción automática neuronal y de adaptación a un dominio

Transversales.

  • Conocimientos de informática relativos al ámbito de estudio
  • Capacidad de gestión de la información
  • Adaptación a nuevas situaciones

7. Metodologías

  • Clases magistrales
  • Prácticas en aula de informática
  • Preparación y entrega de tareas prácticas
  • Estudio de lecciones y respuestas en cuestionarios

8. Previsión de Técnicas (Estrategias) Docentes

9. Recursos

Libros de consulta para el alumno.

Casacuberta Nolla, F. y Peris Abril, A. (2017): “Traducción automática neuronal”, Revista Tradumàtica, 15 , pp. 66-74.

http://revistes.uab.cat/tradumatica/article/viewFile/n15-casacuberta-peris/pdf_48

Bowker, L. (2002): Computer-Aided Translation Technology. A practical introduction. Canada: Univesity of Ottawa Press.

Caswell, I. Liang, B.: (2020): Recent Advances in Google Translate. [Mensaje en un blog] Google AI Blog. En línea: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html

Díaz Fauces, O. y García González, M. (eds.) (2008): Traducir (con) software libre. Granada: Comares.

Forcada, M. L. (2017): Making sense of neural machine translation. Translation Spaces 6:2 pp. 291–309. http://www.dlsi.ua.es/~mlf/docum/forcada17j2.pdf

Forcada, M. L. (2019): Traducción automática neural: cómo funciona y qué se puede esperar de ella. [Diapositivas]. Departamento de Lenguajes y Sistemas, Universidad de Alicante. En línea: https://www.dlsi.ua.es/~mlf/tmp/forcada_torrejuana.pdf

Hearne, M.; Way, A (2011): "Statistical Machine Translation: A Guide for Linguists and Translators". Language and Linguistics Compass, 5 (5), pp. 205-226. En línea: http://www.computing.dcu.ie/~away/CA446/SMTforLinguists.pdf

Koehn, P. (2017): Neural Machine Translation, arXiv preprint arXiv:1709.07809v1

Martín-Mor, A.; Piqué, R. y Sánchez-Gijón, P. (2016): Tradumàtica: Tecnologies de la traducció. Barcelona: Eumo

Oliver, A., Moré J. y Climent, S (coord.) (2008): Traducción y tecnologías. Barcelona: UOC.

Oliver, Antoni (2016): Herramientas tecnológicas para traductores. Barcelona: UOC.

Reinke, U. (2013): “State of the Art in Translation Memory Technology”. Translation: Computation, Corpora, Gognition, 3 (1), pp. 27-48. Disponible en: <http://www.t-c3.org/index.php/t-c3/article/view/25/29>

Scheider, D.; Zampieri, M.; Genabith, J.v. (2018): Translation memories and the translator. A report on a user survey, Babel, 64 (5/6), pp. 734-762. En línea: https://doi.org/10.1075/babel.00062.sch

Sikes, R (2007): “Fuzzy matching in theory and practice”. Multilingual, September 2007, pp. 39-43

Somers, H. (2003): “Translation memory systems”. En: Somers, H. (ed.): Computers and Translators. A translator's guide. Amsterdam / Philadelphia: John Benjamins, pp. 31-47.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

Corpas Pastor, G. y Varela Salinas, M.J. (eds.) (2003): Entornos informáticos de la traducción profesional. Las memorias de traducción. Granada: Atrio.

Hutchins, J. (2010): "Machine translation: a concise history". Journal of Translation Studies, 13 (1-2), pp. 29-70. En linea: http://www.hutchinsweb.me.uk/CUHK-2006.pdf

Koehn, P. y Knowles, R. (2017): Six Challenges for Neural Machine Translation, Proceedings of the First Workshop on Neural Machine Translation. (p. 28–39). Vancouver: Association for Computational Linguistics. En línea: https://www.aclweb.org/anthology/W17-3204.pdf

Raya, R. M. (2004): XML Localisation Interchange File Format as an intermediate file format. Disponible en: http://www.maxprograms.com/articles/xliff.html

Savourel, Y. (2001): XML Internationalization and Localization. Indianapolis: Indiana Sams.

10. Evaluación

Consideraciones generales.

 

Criterios de evaluación.

1ª Convocatoria

  • Prueba escrita: 25%
  • Prueba(s) práctica(s) en aula de informática: 45%
  • Asistencia, entrega de tareas, respuestas en cuestionarios: 30%

Se deben de superar las pruebas escrita y práctica para aprobar la asignatura.

2ª Convocatoria

Los alumnos que no entregaron todas las tareas y cuestionarios durante el desarrollo del curso en las fechas señaladas, en esta convocatoria serán evaluados de acuerdo al siguiente criterio:

  • Prueba escrita: 30%
  • Prueba práctica: 70%

Instrumentos de evaluación.

Prueba escrita

Pruebas prácticas en aula de informática

Valoración de la entrega de tareas en las fechas señaladas

Valoración de respuestas en cuestionarios

Asistencia (activa)

Posible defensa de las prácticas realizadas

Recomendaciones para la evaluación.

Realizar un seguimiento continuado de la asignatura. Practicar con las herramientas informáticas seleccionadas en horas de trabajo individual para resolver los mismos o similares problemas a los que se planteen en clases prácticas. Tener iniciativa, plantearse y abordar la solución de nuevos problemas.

Recomendaciones para la recuperación.

Obtener del profesor información de las carencias que han llevado al alumno a este estado.

11. Organización docente semanal