Guías Académicas

MATEMÁTICA APLICADA I

MATEMÁTICA APLICADA I

GRADO EN ARQUITECTURA TÉCNICA

Curso 2021/2022

1. Datos de la asignatura

(Fecha última modificación: 02-05-21 10:42)
Código
101000
Plan
ECTS
6.00
Carácter
BÁSICA
Curso
1
Periodicidad
Primer Semestre
Idioma
ESPAÑOL
Área
MATEMÁTICA APLICADA
Departamento
Matemática Aplicada
Plataforma Virtual

Campus Virtual de la Universidad de Salamanca

Datos del profesorado

Profesor/Profesora
José Manuel Fernández Queiruga
Grupo/s
1
Centro
E. Politécnica Superior de Zamora
Departamento
Matemática Aplicada
Área
Matemática Aplicada
Despacho
Despacho 215. Edificio Politécnica
Horario de tutorías
https://politecnicazamora.usal.es/tutorias/
URL Web
http://studium.usal.es
E-mail
xose.queiruga@usal.es
Teléfono
923294500 Ext 3742

2. Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia.

Fundamentos Científicos. En la memoria de grado figura con las materias Matemática Aplicada y Física Aplicada.

Papel de la asignatura.

Esta asignatura cumple un doble servicio. Por un lado proporciona al alumnado los recursos necesarios para el seguimiento de otras materias más específicas de la carrera y por otro fomenta la capacidad de abstracción, rigor, análisis y estudio de otras asignaturas. En definitiva, con esta asignatura pretendemos consolidar, homogeneizar y ampliar la formación matemática del alumnado

Perfil profesional.

El seguimiento correcto de esta asignatura permitirá alcanzar al alumnado una formación matemática básica de indudable interés para su ejercicio profesional desde el punto de vista instrumental.

3. Recomendaciones previas

Aunque en muchos casos la asignatura es auto-contenida, es evidente que son necesarios los conocimientos básicos adquiridos en la etapa del Bachillerato. Se necesitan por tanto, conocimientos básicos tanto de Álgebra Lineal como de Cálculo en una variable.

En consecuencia, no existe un listado de asignaturas previas fuera de las consideraciones genéricas realizadas.

4. Objetivo de la asignatura

OBJETIVOS GENERALES:

- Modelizar situaciones sencillas y aplicar las técnicas adecuadas para la solución del problema planteado

- Utilizar técnicas matemáticas exactas y aproximadas

- Interpretar las soluciones en términos  matemáticos en el contexto del problema real planteado

 

OBJETIVOS ESPECÍFICOS:

- Resolver problemas básicos de cálculo diferencial e integral.

- Utilizar las diferentes técnicas de aproximación polinómica.

- Utilizar técnicas aproximadas de cálculo integral.

- Resolver problemas de integración de ecuaciones diferenciales ordinarias.

- Utilizar modelos matemáticos adecuados para resolver problemas reales.

5. Contenidos

Teoría.

A continuación se exponen los distintos contenidos de la asignatura por bloques temáticos. Los contenidos de los distintos temas son eminentemente prácticos, con las inevitables referencias teóricas que ayuden a enmarcar y comprender la justificación del mecanismo de resolución de problemas.

 

BLOQUE I: CÁLCULO EN UNA VARIABLE.

 

Tema 1: Repaso del Cálculo Diferencial en una variable. Cálculo de derivadas. Polinomio de Taylor. Criterio general de máximos y mínimos. Aplicaciones.

Tema 2: Métodos numéricos. Aproximación de raíces. Polinomio de interpolación. Error de interpolación. Aplicaciones.

Tema 3: Cálculo Integral. Repaso del cálculo de primitivas. Integral definida. Teorema fundamental del cálculo. Regla de Barrow. Algunas aplicaciones de la integral definida. Integración numérica.

 

BLOQUE II: CÁLCULO EN VARIAS VARIABLES.

 

Tema 1: Funciones de varias variables. Límites y continuidad para funciones de varias variables. Cálculo de límites.

Tema 2: Cálculo diferencial en varias variables. Derivas parciales y direccionales. Derivadas sucesivas. Diferenciación de funciones compuestas. Funciones implícitas. Fórmula de Taylor. Extremos relativos. Extremos condicionados.

Tema 3: Integrales dobles. Integrales sobre rectángulos. Teorema de Fubini. Integración sobre conjuntos más generales. Técnicas de integración. Aplicaciones.

 

BLOQUE III: ECUACIONES DIFERENCIALES

 

Tema 1: Ecuaciones diferenciales ordinarias. Nociones generales. Integración exacta de algunos tipos de ecuaciones diferenciales de primer orden. Aplicaciones.

6. Competencias a adquirir

Básicas / Generales.

CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

CB4 - Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no Especializado.

CG5 - Capacidad de razonamiento, discusión y exposición de ideas propias

Específicas.

CE1. Aptitud para utilizar los conocimientos aplicados relacionados con el cálculo numérico e infinitesimal, el álgebra lineal, la geometría analítica y diferencial, y las técnicas y métodos probabilísticos y de análisis estadístico.

Transversales.

CT1. Capacidad de organización y planificación

CT2. Resolución de problemas

CT7. Capacidad de gestión de la información

7. Metodologías

La metodología docente se enfoca a la resolución de problemas, aunque obviamente en las clases magistrales se exponen los fundamentos teóricos mínimos necesarios para una correcta comprensión de los diferentes algoritmos de resolución de problemas que se utilizan a lo largo del semestre.

En consecuencia, la mayoría de las actividades realizadas en el aula son de carácter práctico, con la resolución por parte del profesor y de los alumnos de numerosos problemas que permitan adquirir las competencias fijadas para esta asignatura.

Un apartado importante en esta asignatura lo constituyen las prácticas de laboratorio usando el paquete Mathematica. Estas prácticas se realizan en grupos medianos (dependiendo de la capacidad del aula asignada), aunque la formación se completa con el trabajo individual de los alumnos, aprovechando la licencia campus de Mathematica que la Universidad de Salamanca tiene.

En consecuencia, las actividades presenciales de los alumnos se orientan a la resolución de problemas y a la utilización de un software matemático avanzado que les permita abordar cálculos complicados.

Los materiales docentes están a disposición de los alumnos de la plataforma Studium de la Universidad de Salamanca.

Los alumnos han de elaborar, individualmente y en grupos muy reducidos, una serie de trabajos que permitan su evaluación. También se realizarán exámenes presenciales (uno cada mes, aproximadamente) en la hora de clase.

8. Previsión de Técnicas (Estrategias) Docentes

9. Recursos

Libros de consulta para el alumno.

García, A., García, F., Gutiérrez, A., López, A., Rodríguez, G., De la Villa, A. (2007). Cálculo I, Teoría y problemas de Análisis Matemático en una variable. Tercera Edición. Editorial Clagsa.

 

García, A., López, A., Rodríguez, G., Romero, S., De la Villa, A. (2002). Cálculo II, Teoría y problemas de funciones de varias variables. Segunda Edición. Editorial Clagsa.

 

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

Burden, R.L.; Faires, D. (1990). Análisis Numérico. Grupo Editorial Iberoamérica.

García, A., García, F.,  López, A., Rodríguez, G., De la Villa, A. (2006). Ecuaciones Diferenciales Ordinarias. Teoría y problemas. Editorial Clagsa.

Salas, S., Hille, E. (1994). Calculus de una y varias variables. Editorial Reverté.

Simmons, G. (1993). Ecuaciones Diferenciales. Editorial McGraw-Hill.

10. Evaluación

Consideraciones generales.

Los procedimientos de evaluación miden la consecución de los objetivos de la asignatura. Además de los trabajos presentados por los alumnos sobre algunos aspectos teóricos y prácticos relacionados con la asignatura, se valorará el resultado de los exámenes presenciales cuyo formato se detalla más abajo.

Criterios de evaluación.

Valorar la utilización de las técnicas exactas y aproximadas adecuadas para resolver los problemas planteados.

Valorar la claridad y rigor de las argumentaciones realizadas.

La participación activa en clase, la asistencia a las actividades complementarias reflejadas en los apartados Tutorías y Actividades de seguimiento online y los trabajos entregados por los alumnos serán evaluados y constituirán hasta un 60% de la calificación final. Estos trabajos hacen referencia a la resolución de problemas y a la realización de las prácticas con Mathematica.

No se tendrán en cuenta los errores de cálculo salvo que sean repetidos e impidan la correcta interpretación de los problemas a resolver.

Instrumentos de evaluación.

Los trabajos teóricos y prácticos a lo largo del curso.

 

Los exámenes presenciales realizados durante las horas de clase (4 en total). Estos constarán en la resolución de problemas, donde los alumnos podrán utilizar libros de texto y material de elaboración propia. Las fechas de los exámenes serán fijados de común acuerdo con los alumnos y con una periodicidad de un examen al mes aproximadamente. Uno de los exámenes se realizará con el programa Mathematica.

 

La participación activa en clase y la asistencia a las actividades complementarias diseñadas reflejadas en la tabla 8 dentro de los apartados Tutorías y Actividades de seguimiento online.

 

Los trabajos de los alumnos y su participación en las actividades mencionadas constituyen el 60% de la calificación final.

La calificación obtenida en los exámenes presenciales constituye el 40% de la calificación final.

 

Para los alumnos que no han superado la asignatura por el procedimiento anteriormente descrito, se realizará antes de la calificación final en primera convocatoria y en el período de exámenes fijado por la Junta de Escuela, un examen global de recuperación cuya valoración no excederá de un 40% de la nota final.

 

En el caso de no superar la asignatura en primera convocatoria, el procedimiento de recuperación consistirá en la realización de un examen presencial y/o en la realización de las actividades recomendadas por el profesor (véase el apartado de recomendaciones para la recuperación).

 

Finalmente, hay que hacer constar las razones por las que la calificación de un alumno será la de “Alumno sin calificar” o bien de “Alumno No Presentado”:

La no realización de la mitad de los exámenes programados.

La no realización de la mitad de los trabajos requeridos a lo largo del semestre.

Recomendaciones para la evaluación.

Realizar durante las horas de trabajo autónomo de los alumnos las actividades sugeridas por el profesor en el aula.

Asistir a clase y utilizar las tutorías es una actividad fundamental para el correcto seguimiento de la asignatura.

Recomendaciones para la recuperación.

Asistir a una tutoría personalizada con el profesor de la asignatura para aquellos alumnos presentados que no superen la asignatura. En dicha tutoría se realizará una programación de las actividades del alumno para alcanzar las competencias de esta asignatura.