Guías Académicas

ÁLGEBRA Y CÁLCULO

ÁLGEBRA Y CÁLCULO

GRADO EN INGENIERÍA GEOLÓGICA PLAN 2016

Curso 2021/2022

1. Datos de la asignatura

(Fecha última modificación: 27-07-21 13:15)
Código
108600
Plan
2016
ECTS
6.00
Carácter
BÁSICA
Curso
1
Periodicidad
Primer Semestre
Áreas
ANÁLISIS MATEMÁTICO
ÁLGEBRA
Departamento
Matemáticas
Plataforma Virtual

Campus Virtual de la Universidad de Salamanca

Datos del profesorado

Profesor/Profesora
Darío Sánchez Gómez
Grupo/s
1
Departamento
Matemáticas
Área
Álgebra
Centro
Fac. Ciencias
Despacho
M.3321 (Edificio de la Merced)
Horario de tutorías
Martes, miércoles y jueves de 13:00 a 14:00
URL Web
-
E-mail
dario@usal.es
Teléfono
923294460 Ext 1534

2. Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia.

Bases para la Geología

Papel de la asignatura.

Formación básica en el lenguaje matemático para su utilización en el resto de las asignaturas, tanto del propio bloque, como los demás.

Perfil profesional.

Al ser una materia de carácter básico, es fundamental en cualquier perfil profesional vinculado a la Titulación de Grado en Geología.

3. Recomendaciones previas

  • Manejo de las operaciones elementales con números reales y polinomios.
  • Conocimiento de las funciones elementales y sus propiedades: logaritmos, exponenciales y funciones trigonométricas.
  • Resolución de ecuaciones de primer y segundo grado.
  • Resolución de sistemas lineales de ecuaciones.

4. Objetivo de la asignatura

Generales      

  • Contribuir a la formación y desarrollo del razonamiento científico.
  • Proveer al alumno de capacidades de abstracción, concreción, concisión, imaginación, intuición, razonamiento, crítica, objetividad, síntesis y precisión.

Específicos

  • Aprendizaje de elementos básicos de Álgebra Lineal y Cálculo y su aplicación en las situaciones que los requieran.

5. Contenidos

Teoría.

  1. Continuidad y derivabilidad de funciones de una variable
  2. Fórmula de Taylor y aplicaciones
  3. Cálculo de primitivas
  4. Integral definida y aplicaciones
  5. Espacios vectoriales.
  6. Aplicaciones lineales.
  7. Matrices. Sistemas lineales.
  8. Geometría afín y euclídea

6. Competencias a adquirir

Específicas.

  • Conocer y saber utilizar los conceptos y teoremas básicos del Cálculo Diferencial.
  • Calcular derivadas y desarrollos de Taylor de funciones.
  • Determinar los puntos críticos de funciones.
  • Resolver problemas de optimización.
  • Conocer y saber utilizar los conceptos y teoremas básicos del Cálculo Integral.
  • Aplicar diferentes métodos elementales al cálculo de primitivas.
  • Calcular áreas, volúmenes y longitudes de curvas.
  • Conocer los conceptos y teoremas básicos del Álgebra lineal: espacio vectorial, aplicación lineal, base, dimensión.
  • Conocer el concepto de matriz y sus operaciones.
  • Conocer el producto escalar y sus aplicaciones.
  • Conocer criterios para la discusión de sistemas lineales de ecuaciones y su resolución.
  • Saber utilizar los conceptos básicos de las geometrías afín y euclídea.
  • Distinguir las posiciones relativas de subvariedades.

Transversales.

Instrumentales:

  • Identificación de problemas y planteamiento de estrategias de solución.
  • Habilidades para recuperar y analizar información desde diferentes fuentes.

Interpersonales:                 

  • Comunicación de conceptos abstractos.
  • Argumentación racional.

Sistémicas:

  • Creatividad.
  • Planificar y dirigir.

7. Metodologías

Clases magistrales:

  En estas clases se mostrarán a los alumnos los conceptos y resultados fundamentales del programa. Se mostrarán con rigor matemático los principales resultados de cada tema y se ofrecerán ejemplos de los conceptos introducidos.

                                          

Clases prácticas:

   Se plantearán y resolverán ejercicios que ayuden a la comprensión de la teoría. También los alumnos presentarán al resto de los compañeros los problemas previamente planteados y se resolverán las dudas que se generen.

 

Tutorías:

 El alumno podrá solicitar tutorías fuera de las horas programadas cuando lo estime necesario para resolver cuestiones y dudas que le puedan surgir en el proceso de aprendizaje. Estas tutorías son voluntarias.

8. Previsión de Técnicas (Estrategias) Docentes

9. Recursos

Libros de consulta para el alumno.

  • Cálculo I. Larson, R. et al. Pirámide, 2002.
  • Álgebra Lineal y Geometría. Castellet, Llerena. Reverté.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

  • Cálculo I. Teoría y problemas de Análisis Matemático en una variable. García, A. et al. CLAGSA, 1998.
  • Calculus. Spivak. Reverté.
  • Problemas y ejercicios de Análisis Matemático. Demidovich. Paraninfo.
  • Álgebra Lineal. Burgos. McGraw-Hill.
  • Álgebra Lineal. Puerta. UPC. ÁlgebraLineal.
  • Problemas resueltos de Álgebra Lineal. Arvesú et al. Thomson.

10. Evaluación

Consideraciones generales.

Se evaluará el nivel adquirido en las competencias y destrezas expuestas, así como el logro de los objetivos propuestos. 

Criterios de evaluación.

-  La evaluación valorará la adquisición de las competencias de carácter teórico y práctico que se comprobará tanto por actividades de evaluación continua como por una prueba escrita final.

-  Las actividades de evaluación continua supondrán 30% de la nota final.

-  La prueba escrita final será un 70% de la nota final Para poder superar la asignatura se requiere que la calificación obtenida en esta prueba sea al menos de 3/10.

-  La nota final se calculará como el máximo entre la nota del examen final (en primera o segunda convocatoria) y la nota ponderada 30% evaluación continua y 70% examen final.

Instrumentos de evaluación.

Se utilizarán los siguientes:

  • Evaluación continua. Consistirá en pruebas escritas, que estarán compuestas por cuestiones teóricas y prácticas, y problemas de desarrollo. Supondrán un 30%de la nota total de la asignatura. La duración estimada de este tipo de pruebas será 2 horas.
  • Prueba escrita final: Constará de cuestiones teóricas y prácticas y problemas de desarrollo, sobre los contenidos de todos los temas de la asignatura. Tendrá una duración superior a la de las pruebas escritas realizadas durante el cuatrimestre, entre 3 y 4 horas. Supondrá un 70% de la nota total de la asignatura.

 

Tanto en las pruebas de evaluación continua como en la prueba final, la parte de teoría y la parte de problemas ponderarán al 50%.

Recomendaciones para la evaluación.

-        La asistencia y participación activa en las clases y en las actividades programadas es altamente recomendable.

-        En la preparación de la parte teórica es importante comprender (los conceptos, razonamientos, etc.) y evitar la memorización automática.

-        En cuanto a la preparación de problemas, es necesario ejercitarse con los problemas que aparecen en el libro de texto recomendado, no sólo con los problemas resueltos, sino intentando la resolución de los problemas propuestos.

-        Resolver las dudas mediante el manejo de bibliografía y acudiendo al profesor.

Recomendaciones para la recuperación.

-     Analizar los errores cometidos en los exámenes y en los trabajos (acudiendo para ello a la revisión).

-     Trabajar en su preparación con las mismas recomendaciones realizadas para la evaluación.

-     Para la segunda convocatoria, se realizará un examen de características similares al de la convocatoria ordinaria (teoría y problemas al 50%).