Guías Académicas

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA I

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA I

GRADO EN INGENIERÍA CIVIL

Curso 2022/2023

1. Datos de la asignatura

(Fecha última modificación: 26-05-22 12:24)
Código
106201
Plan
ECTS
6.00
Carácter
BÁSICA
Curso
1
Periodicidad
Primer Semestre
Área
ÓPTICA
Departamento
Física Aplicada
Plataforma Virtual

Campus Virtual de la Universidad de Salamanca

Datos del profesorado

Profesor/Profesora
Juan Antonio del Val Riaño
Grupo/s
1
Centro
E. Politécnica Superior de Ávila
Departamento
Física Aplicada
Área
Óptica
Despacho
114
Horario de tutorías
Se fijarán al comienzo del cuatrimestre
URL Web
-
E-mail
juanval@usal.es
Teléfono
920 353500 ext 3775

2. Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia.

Formación básica.

 

Papel de la asignatura.

Esta asignatura proporciona conocimientos y capacidades de carácter básico que resultarán útiles para otras asignaturas del plan de estudios, como Fundamentos Físicos de la Ingeniería II, Mecánica técnica, Materiales de construcción, Resistencia de materiales, Hidraúlica, Cálculo de Estructuras, Tecnología de Estructuras, etc.

Perfil profesional.

Se trata de una asignatura de carácter básico y, por tanto, las capacidades y conocimientos que en ella se adquieren son necesarios para cualquier perfil profesional del futuro graduado.

3. Recomendaciones previas

Asignatura del primer curso del grado, se exigen los conocimientos mínimos de física y matemáticas de la educación secundaria para ingresar en el grado.

Se recomienda cursar simultáneamente: Fundamentos Matemáticos de la Ingeniería I.

4. Objetivo de la asignatura

  • Conocimiento y comprensión de algunas leyes básicas de la Mecánica Clásica del punto y de los sistemas de partículas, los sistemas mecánicos oscilantes y la Termodinámica.
  • Capacidad para interpretar fenómenos físicos a partir de dichas leyes.
  • Conocimiento y comprensión de aplicaciones tecnológicas basadas en dichas leyes.
  • Capacidad para aplicar los conocimientos teóricos a la resolución de problemas.
  • Adquisición de algunas técnicas y hábitos propios del trabajo de laboratorio: toma de medidas, tratamiento estadístico de datos, depuración de errores experimentales e interpretación de resultados.

 

5. Contenidos

Teoría.

  1. Mecánica del punto y de los sistemas de partículas:
    1. Cinemática
    2. Dinámica
    3. Estática
    4. Sistemas deformables y fluidos
  2. Oscilaciones.
  3. Termodinámica.

6. Competencias a adquirir

Específicas.

CE.4 Comprensión y dominio de los conceptos básicos sobre las leyes generales de la mecánica, termodinámica, campos, ondas y electromagnetismo y su aplicación para la resolución de problemas propios de la ingeniería.

Transversales.

CT1 - Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CT2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

CT3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes dentro del ámbito de la Ingeniería Civil para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

CT4 - Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.

CT5 - Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

7. Metodologías

Clase de teoría: El profesor expondrá los conceptos, principios, desarrollos lógicos, resultados y aplicaciones de los modelos teóricos cuya asimilación confiere las competencias transversales y específicas de la asignatura. Asímismo estimulará la intervención del estudiante mediante invitaciones abiertas a reflexionar públicamente sobre los contenidos expuestos.

 

Clases de problemas: El profesor expondrá y debatirá con los estudiantes la resolución de problemas de aplicación de la teoría que requieran el ejercicio de las competencias a adquirir en la asignatura. El rigor lógico en la resolución de los problemas y su continuidad con las explicaciones teóricas serán cuidados con el máximo detalle. Los enunciados de los problemas a resolver en cada clase serán conocidos de antemano por el estudiante.

 

Prácticas de laboratorio/aula informática: Las prácticas de laboratorio serán realizadas por los estudiantes en pareja con ayuda del profesor, tras una breve explicación de su fundamento, finalidad y metodología por parte de este. Los estudiantes dispondrán de un guión de la práctica que deberán cumplimentar y entregar, dejando constancia de toda la secuencia de medidas y cálculos hasta llegar al resultado final.

 

Trabajo autónomo: El estudiante deberá examinar en profundidad los problemas resueltos en clase para constatar reflexivamente el soporte lógico y metodológico que el modelo teórico aporta a la resolución. Con este bagaje deberá abordar por sí solo la resolución de los problemas propuestos por el profesor como continuación de los resueltos en clase.

 

Cuestionarios: Finalizado cada tema/subtema, el estudiante deberá resolver cuestionarios tipo test de respuesta cerrada que constarán tanto de cuestiones teóricas como de ejercicios y problemas cortos, cuyos resultados contribuirán a la evaluación continua de la asignatura.

 

Tutorías: Serán individuales o en pequeños grupos (2-3 alumnos).

 

Plataforma virtual Studium: Para facilitar las presentaciones y apuntes de cada tema, colección de cuestiones y problemas, guiones de prácticas de laboratorio, resolución de cuestionarios, anuncios y calificaciones de la asignatura, ejemplos de exámenes de cursos anteriores, etc.

8. Previsión de Técnicas (Estrategias) Docentes

9. Recursos

Libros de consulta para el alumno.

Física para la ciencia y la tecnología (2 vol.). Tipler y Mosca. Reverté, 2004.

 

Física para ciencias e ingeniería (2 vol.). Serway y Jewett. Thomson, 2005.

 

Física Universitaria (2 vol.). Sears, Zemansky, Young y Freedman. Pearson Addison Wesley, 2004.

 

Física (1 vol.). Alonso y Finn, Addison-Wesley, 1995.

 

Mecánica vectorial para ingenieros (2 vol.): Estática y dinámica. Beer, Johnston, Mazurek y Eisenberg y Cornwell. 2010.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

En la plataforma virtual Studium: Apuntes de cada tema, colección de cuestiones y problemas, guiones de prácticas de laboratorio, cuestionarios, ejemplos de exámenes de cursos anteriores, etc.

10. Evaluación

Consideraciones generales.

La evaluación pretende medir el grado de adquisición de las competencias propias de la asignatura, las cuales aparecen reflejadas en el apartado 6.

Criterios de evaluación.

  • Exámenes parciales escritos (con un peso en la calificación global del 60%): Constarán de cuestiones teóricas y problemas de dificultad similar a los realizados en clase. Se valorará la claridad y concisión en la exposición de la teoría y el correcto desarrollo de los problemas junto con su solución numérica final.
  • Cuestionarios de teoría y problemas cortos (con un peso global del 30%):

Se valorará la correcta resolución de los mismos.

  • Prácticas de laboratorio (con un peso global del 10%):

Se valorará el rigor en el análisis y la precisión de los resultados reflejados en los informes correspondientes.

Para superar la asignatura se requiere un mínimo de 5 (sobre 10) en la calificación global. Quienes no se presenten a un conjunto de pruebas que sumen al menos un 50% de la calificación global se considerarán como “no presentado” en la primera convocatoria.

Instrumentos de evaluación.

2 exámenes parciales (30 % por cada parcial)

6 cuestionarios en Studium de teoría y problemas cortos (5 % por cada cuestionario)

Informes de Prácticas de laboratorio (10 %)

Recomendaciones para la evaluación.

Se recomienda la asistencia a clase y llevar al día la asignatura, realizar todos los problemas propuestos, aclarar posibles dudas en clase y en tutorías, entrenarse con los cuestionarios y exámenes ofrecidos a modo de ejemplo, y realizar todas las pruebas que contribuyen a la calificación global en la primera convocatoria, revisando y aprendiendo de los fallos cometidos.

El estudio de la teoría y la resolución de problemas debe basarse en la comprensión de las leyes y conceptos físicos, no en la memorización y automatización de técnicas de resolución.

 

Recomendaciones para la recuperación.

La recuperación (segunda convocatoria) se basará en un examen final escrito con ejercicios similares a los exámenes parciales salvo por el hecho de que cubrirá la totalidad de los contenidos y tendrá una duración superior.

Tendrá un peso de hasta el 100 % en la calificación final. No obstante, para incentivar la participación del alumno en todas las pruebas de evaluación realizadas en la primera convocatoria, la calificación del examen de recuperación podrá incrementarse hasta un máximo de 1 punto sobre 10, según un factor calculado por la siguiente expresión:

0.2 x calificación global de la primera convocatoria