Guías Académicas

MATEMÁTICAS I

MATEMÁTICAS I

GRADO EN QUÍMICA

Curso 2023/2024

1. Datos de la asignatura

(Fecha última modificación: 14-06-23 18:32)
Código
104001
Plan
UXXI
ECTS
6.00
Carácter
BÁSICA
Curso
1
Periodicidad
Primer Semestre
Idioma
Castellano
Área
ÁLGEBRA
Departamento
Matemáticas
Plataforma Virtual

Campus Virtual de la Universidad de Salamanca

Datos del profesorado

Profesor/Profesora
Beatriz Graña Otero
Grupo/s
1
Centro
Fac. Ciencias
Departamento
Matemáticas
Área
Álgebra
Despacho
M3320 Ed. Merced
Horario de tutorías
Lunes y martes 12h a 13:30h
URL Web
mat.usal.es/
E-mail
beagra@usal.es
Teléfono
923 294500, ext. 1534
Profesor/Profesora
Daniel Hernández Serrano
Grupo/s
2
Centro
Fac. Ciencias
Departamento
Matemáticas
Área
Geometría y Topología
Despacho
M3322 Edificio La Merced (Matemáticas)
Horario de tutorías
Lunes de 15h a 18h.
URL Web
-
E-mail
dani@usal.es
Teléfono
923 29 44 60 Ext:1553

2. Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia.

Asignaturas Básicas de la rama de Ciencias

 

Papel de la asignatura.

Formación básica en el lenguaje matemático, para su utilización en el resto de asignaturas, tanto del propio bloque, como los demás.

Perfil profesional.

  • I+D+I en empresas e instituciones, tanto públicas como privadas.
  • Administración en puestos de su competencia profesional y de su nivel académico.
  • Inspector y auditor de calidad (tanto en procesos como ambiental).

3. Recomendaciones previas

Se asumirá que el alumno conoce y maneja con soltura las nociones básicas de Matemáticas estudiadas en Secundaria, en particular: bases de la teoría de conjuntos (operaciones básicas: pertenencia, unión, intersección y diferencia) y de aplicaciones entre conjuntos, los números reales y complejos (sus operaciones y sus principales propiedades), vectores y matrices (producto de matrices y vector por matriz, determinante, traspuesta, inversa y rango de una matriz), resolución de ecuaciones y de sistemas de ecuaciones lineales, cálculo de raíces mediante el método de Ruffini. Será responsabilidad del estudiante solventar las eventuales lagunas que tenga en este sentido.

4. Objetivo de la asignatura

Objetivos generales:

  • Familiarizar a los alumnos con conceptos básicos de Álgebra Lineal.

Objetivos específicos:

  • Conseguir el grado de abstracción necesario para el manejo de nociones matemáticas.
  • Aplicar los resultados obtenidos a problemas relacionados con la Química.

 

5. Contenidos

Teoría.

Tema 1.- Espacios vectoriales.

Espacio vectorial. Independencia lineal y sistemas de generadores. Bases y coordenadas. Teorema de la base. Subespacios vectoriales. Operaciones con subespacios vectoriales. Fórmulas de la dimensión.

Tema 2.- Aplicaciones lineales.

Aplicación lineal entre dos espacios vectoriales. Definición de núcleo e imagen de una aplicación lineal. Fórmula de la dimensión que relaciona el núcleo y la imagen. Matriz asociada a una aplicación lineal respecto de bases fijadas. Cambios de base para vectores y endomorfismos.

Tema 3.- Resolución de sistemas de ecuaciones lineales.

Expresión matricial de un sistema de ecuaciones lineales. Teorema de Rouché- Frobenius. Regla de Cramer. Método de Gauss para la resolución de sistemas de ecuaciones.

Tema 4.- Diagonalización de matrices.

Vectores propios y valores propios de un endomorfismo. Polinomio característico. Criterio de diagonalización utilizando el polinomio característico. Aplicaciones de la diagonalización: potencias de una matriz, resolución de sistemas de ecuaciones diferenciales lineales.

6. Competencias a adquirir

Específicas.

  • Conocer definiciones formalmente correctas de los conceptos básicos de Álgebra Lineal
  • Entender las nociones de espacio vectorial y subespacio vectorial y cómo caracterizarlos.
  • Manejar los conceptos relacionados con aplicaciones lineales en espacios vectoriales y conocer la relación entre aplicaciones lineales y matrices.
  • Determinar cuándo es posible diagonalizar una matriz cuadrada, cómo hacerlo y aplicarlo a la resolución de ecuaciones diferenciales.
  • Reconocer, reinterpretar y analizar nuevos problemas y planear estrategias para su solución.
  • Argumentar y expresarse correctamente con rigor y precisión.

Transversales.

  • Desarrollar la capacidad de análisis y síntesis.
  • Madurar las habilidades en la resolución de problemas.
  • Estimular el aprendizaje autónomo.
  • Aprender a trabajar en equipo.
  • Tener capacidad de organización y planificación.

7. Metodologías

La asignatura consta 6 créditos ECTS cada uno de los cuales supone 10 horas de actividades presenciales y 15 de trabajo autónomo del alumno. El aprendizaje se fomentará mediante las siguientes actividades:

·         Clases presenciales. En estas clases se expondrán a los alumnos los conceptos y resultados fundamentales del programa de contenidos. Se demostrarán con rigor matemático los principales resultados de cada tema y se ofrecerán ejemplos de los conceptos introducidos. Asimismo, se plantearán y resolverán ejercicios que ayuden a la comprensión de la teoría. Las clases presenciales se impartirán en grupo grande y en grupos reducidos  conforme al horario establecido. Adicionalmente, se podrán dedicar algunas clases en grupo reducido para introducir a los alumnos en herramientas informáticas útiles para la asignatura.

·        Realización autónoma de problemas. Esta actividad no presencial consistirá en la realización por parte del alumno de algunos ejercicios prácticos de la asignatura, propuestos por el profesor, y mediante los cuales se pretende asimilar progresivamente los conceptos teóricos mostrados en las clases presenciales.

·         Asimilación de los contenidos y preparación del examen. En esta parte se contabiliza el tiempo dedicado por el alumno para el seguimiento continuo de la asignatura y para la preparación del examen de modo que consiga los objetivos específicos de la asignatura.

-        Tutorías. Se programarán 3 horas de tutoría semanales para que el alumno pueda resolver cuestiones y dudas que le puedan surgir en el proceso de aprendizaje. Estas tutorías son voluntarias.

8. Previsión de Técnicas (Estrategias) Docentes

9. Recursos

Libros de consulta para el alumno.

  • S. Lipschutz, Teoría y Problemas de Álgebra Lineal. Ed. McGraw-Hill.
  • D. Hernández Ruiperez, Álgebra Lineal. Ed. Universidad de Salamanca.
  • E. Espada Bros, Problemas resueltos de álgebra I/II. EDUNSA.
  • J. Arbesú y otros, Problemas Resueltos de Álgebra Lineal. Ed. Thomson.
  • J. de Burgos Román, Álgebra Lineal. Ed. McGraw-Hill.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

M. Castellet e I. Llerena, Álgebra Lineal y Geometría, ed. Reverté.

10. Evaluación

Consideraciones generales.

La evaluación de la adquisición de las competencias de la materia se basará principalmente en el trabajo continuado del estudiante, controlado periódicamente con diversos instrumentos de evaluación, conjuntamente con un examen final.

Criterios de evaluación.

Los criterios de evaluación con sus correspondientes pesos en la calificación final se indican en la siguiente tabla:

Actividades

Peso en la calificación final

Mínimo que hay que obtener para poder superar la materia

Examen parcial con teoría y problemas

30%

30% en teoría y

30% en problemas

Examen final

70%

30% en teoría y

30% en problemas

Para superar la asignatura la calificación final ponderada deberá ser igual o superior a 5 sobre 10, habiendo obtenido un mínimo de 3 sobre 10 tanto en teoría como en problemas en cada una de las pruebas realizadas.

 

Instrumentos de evaluación.

Actividades de evaluación continua:

  • Se realizará un examen parcial con cuestiones teóricas y prácticas hacia la mitad del cuatrimestre. Con una duración aproximada de 2 horas.

Examen final:

  • Se realizará en la fecha prevista en la planificación docente y tendrá una duración aproximada de 3 horas. El examen abarcará tanto teoría como problemas.

Todas las pruebas podrán constar de cuestiones teóricas, demostraciones, cuestiones teórico-prácticas, ejercicios y preguntas tipo test. El alumno tendrá que razonar y expresar correctamente sus respuestas utilizando los conceptos necesarios y desarrollando las demostraciones que se precisen, así como explicar con claridad el planteamiento y desarrollo de los ejercicios

Recomendaciones para la evaluación.

Para la adquisición de las competencias previstas en esta materia se recomienda la asistencia y participación activa en todas las actividades programadas y el uso de las tutorías.

Las actividades de la evaluación continua deben ser entendidas fundamentalmente como una autoevaluación del estudiante que le indica su evolución en la adquisición de competencias.

Recomendaciones para la recuperación.

Se realizará un examen de recuperación en la fecha prevista en la planificación docente.

Para la nota final de la segunda convocatoria se considerará la nota máxima entre: (1) el examen de recuperación o (2) la media ponderada del examen de recuperación (70%) y los controles de evaluación continua realizados  (30 %). Para superar la asignatura en segunda convocatoria la calificación final ponderada deberá ser igual o superior a 5 sobre 10, habiendo obtenido un mínimo de 3 sobre 10 tanto en teoría como en problemas en cada una de las pruebas realizadas.