DISEÑO Y CÁLCULO DE ESTRUCTURAS
GRADO EN INGENIERÍA MECÁNICA
Curso 2024/2025
1. Datos de la asignatura
(Fecha última modificación: 29-05-24 10:25)- Código
- 106525
- Plan
- ECTS
- 6.00
- Carácter
- OBLIGATORIA
- Curso
- 3
- Periodicidad
- Segundo Semestre
- Idioma
- ESPAÑOL
- Área
- MECÁNICA DE MEDIOS CONTINUOS Y TEORÍA DE ESTRUCT.
- Departamento
- Ingeniería Mecánica
- Plataforma Virtual
Datos del profesorado
- Profesor/Profesora
- Javier Sánchez Haro
- Grupo/s
- 1
- Centro
- -
- Departamento
- Ingeniería Mecánica
- Área
- Mecánica de Medios Continuos y Teoría de Estruct.
- Despacho
- Despacho 261. Edificio Politécnica
- Horario de tutorías
- -
- URL Web
- -
- id00922073@usal.es
- Teléfono
- -
2. Recomendaciones previas
Para poder seguir esta asignatura los alumnos deben dominar ciertos conocimientos matemáticos y físicos, así como tener afianzados los conceptos abordados en las asignaturas Resistencia de Materiales y Elasticidad y Ampliación de Resistencia de Materiales por lo que se recomienda no matricularse en ella sin haber cursado con un aprovechamiento mínimo las asignaturas citadas.
3. Objetivos
El objetivo general de la asignatura es proporcionar las herramientas que permitan comprender y analizar el comportamiento resistente de los distintos sistemas estructurales.
Conocer las acciones a considerar en la edificación, manejando e interpretando la normativa vigente. Conocer las tipologías de estructuras habituales en construcciones industriales, así como las simplificaciones e hipótesis empleadas en los modelos de cálculo. Proporcionar métodos de análisis de las estructuras formadas por barras que permitan determinar los estados de tensión y deformación, que permitan verificar los requisitos de resistencia y funcionalidad. Desarrollar estrategias de resolución de estructuras.
4. Competencias a adquirir | Resultados de Aprendizaje
Básicas / Generales | Conocimientos.
CT.1.- Comprensión e interpretación de textos y datos, desarrollo de habilidades para la concreción de los mismos y su exposición de manera clara y sucinta.
CT.2.- Aptitud para la distribución de recursos y tiempos y su implementación en situaciones reales.
CT.3.- Capacidad para la transmisión de conceptos, ideas, procesos, etc., relacionados con la Ingeniería Industrial por vía oral y escrita, de manera clara y correcta.
CT.4.- Capacidad para el empleo de las herramientas científico-técnicas para la resolución de problemas de cálculo y diseño en Ingeniería Industrial y aptitud para la búsqueda de soluciones ingenieriles sostenibles.
Específicas | Habilidades.
CE5 Conocimientos y capacidad para el cálculo y diseño de estructuras y construcciones industriales.
Transversales | Competencias.
No existen
5. Contenidos
Teoría.
Tema 1. CONCEPTOS BÁSICOS DEL ANÁLISIS ESTRUCTURAL. Concepto de estructura. Fases del cálculo de una estructura. Magnitudes en el cálculo de estructuras. Relaciones en el cálculo de estructuras. Linealidad y superposición de efectos. Estructuras isostáticas e hiperestáticas. Energía de deformación.
Tema 2. TIPOLOGÍA DE ESTRUCTURAS. Elementos estructurales. Clasificación de los elementos estructurales. Clasificación de los sistemas estructurales de barras. Idealización de los elementos más habituales en edificación.
Tema 3. SEGURIDAD ESTRUCTURAL Y ACCIONES EN LA EDIFICACIÓN.
Tema 4. ESTRUCTURAS ARTICULADAS. Introducción. Estructuras articuladas isostáticas. Desplazamiento de los nodos. Celosías hiperestáticas.
Tema 5. ESTRUCTURAS RETICULADAS. Introducción. Hipótesis y simplificaciones. Esfuerzos en barras y nudos. Método de las fuerzas y método de los desplazamientos. Transformación de las estructuras debidas a simetrías y antimetrías.
Tema 6. CÁLCULO DE ESTRUCTURAS RETICULADAS POR EL MÉTODO DE LAS FUERZAS. Estructuras intraslacionales con barras inelongables. Estructuras intraslacionales con barras elongables. Estructuras traslacionales. Método de las fuerzas aplicado al cálculo de vigas continuas.
Tema 7. CALCULO DE ESTRUCTURAS RETICULADAS POR EL MÉTODO DE LOS DESPLAZAMIENTOS. Introducción. Grado de
libertad. Rigidez. Coeficiente de transmisión. Planteamiento del cálculo en desplazamientos. Pórticos intraslacionales con barras inelongables. Estructuras con barras elongables.
Tema 8.- CÁLCULO MATRICIAL DE ESTRUCTURAS RETICULADAS. Introducción. Coordenadas locales y globales. Nomenclatura. Matriz de rigidez de una barra en ejes locales. Propiedades. Matriz de rigidez de una barra en ejes globales. Matriz de rotación. Matriz de rigidez de la estructura. Ensamblaje. Vector de cargas. Ecuación matricial de la estructura. Cálculo de los desplazamientos de los nudos en ejes globales. Cálculo de las reacciones en ejes globales. Cálculo de las solicitaciones en los extremos de las barras en ejes globales. Cálculo de las solicitaciones en los extremos de las barras en ejes locales.
Práctica.
Prácticas de aula, con desarrollo de problemas relativos a cada tema desarrollado en las clases magistrales de teoría.
Se realizaran clases y/o seminarios para resolución de ejercicios prácticos.
6. Metodologías Docentes
Sesión magistral. Exposición de los contenidos de la asignatura.
Prácticas en el aula. Formulación, análisis, resolución y debate de un problema o ejercicio, relacionado con la temática de la asignatura.
Tutorías. Tiempo atender y resolver dudas de los alumnos.
Actividades prácticas autónomas. Ejercicios relacionados con la temática de la asignatura, por parte del alumno
Pruebas de evaluación. Pruebas que incluyen actividades de seguimiento, resolución y defensa de problemas o caso, y una prueba escrita al final del curso
7. Distribución de las Metodologías Docentes
8. Recursos
Libros de consulta para el alumno.
SAN MARTIN QUIROGA: “Calculo convencional de estructuras reticuladas” Ed. ETSI C,C y P de Santander.
GONZÁLEZ DE CANGAS, J.R. “ Cálculo de estructuras”. Colegio de Ing. Caminos, Canales y Puertos.
VÁZQUEZ, M. “Cálculo matricial de estructuras”. Colegio de Ing. Técnicos de Obras Públicas.
E. ALARCÓN, R. ÁLVAREZ, Ma S. GÓMEZ. – “Cálculo matricial de estructuras”.- Ed. Reverte.
ARGUELLES ÁLVAREZ, R. “Cálculo de estructuras”. ETS de Ing. de Montes, Madrid.
GONZÁLEZ DE CANGAS, J.R. “ Cálculo matricial de estructuras”. Colegio de Ing. Caminos, Canales y Puertos.
CORCHERO RUBIO, J.A. “Cálculo de Estructuras (resolución práctica)”. Colección escuelas. CICCY P.
Codigo Tecnico SE y AE
9. Evaluación
Criterios de evaluación.
Conocer las acciones a considerar en el cálculo de estructuras de edificación.
Comprender el comportamiento de distintos modelos estructurales de barras.
Aplicar métodos de análisis de las estructuras.
Desarrollar estrategias de resolución de estructuras.
Sistemas de evaluación.
A lo largo del curso se planteará un ejercicio para su realización autónoma por parte del alumnado, que permita consolidar los aprendizajes desarrollados en sesiones previas en el aula. La propuesta y entrega se realizará en el aula, formando parte del desarrollo de la docencia de aula. La nota obtenida en este trabajo práctico corresponde al 30% de la calificación final de la asignatura.
El examen de prácticas tendrá un peso en la evaluación corresponde al 10% de la calificación final de la asignatura.
El 10% de la calificación final de la asignatura se obtendrá a través del resultado de las tareas de asistencia y participación, seguimiento en tutorías y en general actuaciones que demuestren en el alumno una actitud proactiva para con la asignatura.
El examen final tendrá un peso en la evaluación del 50% de la calificación de la asignatura.
Si el alumno lo desea, puede obtener el 100% de su calificación mediante examen final. En este segundo caso no puede optar a la calificación por participación.
Recomendaciones para la evaluación.
Las pruebas de evaluación de la adquisición de las competencias previstas se están formadas por una evaluación continua y por un examen que se realizara al final del curso según calendario establecido por el centro.
Se recomienda la participación activa en las actividades programadas, el estudio apoyado en la bibliografía, hacer uso de las tutorías para resolver dudas y trabajar de forma sistemática en las tareas autónomas.
Recomendaciones para la recuperación:
En segunda convocatoria, la asistencia y participación no tienen recuperación, manteniendo la calificación obtenida.
El examen final deberá realizarse de nuevo e integrará todos los conocimientos de la asignatura.
Los estudiantes que lo deseen pueden obtener el 100% de su calificación mediante examen práctico final.