MÉTODOS DE REMUESTREO

MÉTODOS DE REMUESTREO

Grado en Estadística- Plan 2016

Curso 2020/2021

1. Datos de la asignatura

(Fecha última modificación: 25-05-20 0:39)
Código
108429
Plan
2016
ECTS
6.00
Carácter
OPTATIVA
Curso
4
Periodicidad
Primer Semestre
Área
ESTADÍSTICA E INVESTIGACIÓN OPERATIVA
Departamento
-
Plataforma Virtual

Campus Virtual de la Universidad de Salamanca

Datos del profesorado

Profesor/Profesora
José Luis Vicente Villardón
Grupo/s
1
Departamento
Estadística
Área
Estadística e Investigación Operativa
Centro
Fac. Biología
Despacho
3.3. - 2ª Planta. Facultad de Medicina
Horario de tutorías
Cita previa por correo electrónico
URL Web
http://biplot.usal.es
E-mail
villardon@usal.es
Teléfono
923 294500, Ext. 6978
Profesor/Profesora
Ana Belén Nieto Librero
Grupo/s
1
Departamento
Estadística
Área
Estadística e Investigación Operativa
Centro
Fac. Economía y Empresa
Despacho
nº 3.15 (1ª planta)
Horario de tutorías

Cita previa por correo electrónico

URL Web
http://biplot.usal.es
E-mail
ananieto@usal.es
Teléfono
923294500 Ext: 6988

2. Sentido de la materia en el plan de estudios

Bloque formativo al que pertenece la materia.

Estadística Avanzada

Papel de la asignatura.

Su carácter es optativo y su docencia está programada en el segundo semestre de 3º curso.  Los alumnos ya han estudiado, en los cursos anteriores, los métodos estadísticos descriptivos e inferenciales básicos. En la asignatura se introducen nuevos métodos para realizar inferencias basados en la propia muestra, mediante remuestreo, sin conocimiento previo sobre las distribuciones poblacionales

Perfil profesional.

Actualmente todos los trabajos basados en la toma de datos experimentales han de basar sus resultados en métodos estadísticos. La asignatura proporciona los conocimientos básicos para analizar datos con las técnicas modernas de remuestreo y el lenguaje necesario para comprender los informes redactados por otros profesionales.

Los conceptos explicados son útiles para aquellos profesionales que desarrollarán su actividad en diversos campos de aplicación como las Ciencias Sociales, Biomedicina, Marketing etc en los que se dispone frecuentemente de datos complejos. También será útil para aquellos alumnos que en el futuro se dediquen a la investigación en este campo.

3. Recomendaciones previas

Tener aprobadas las asignaturas de Estadística Descriptiva, Estadística Matemática, Modelos Lineales y Análisis Multivariante.

Inglés básico para la lectura de articulos científicos que pueden utilizarse en algunos de los seminarios y trabajos.

Conocimientos de informática a nivel de usuario y manejo de R.

4. Objetivo de la asignatura

Se introducirán las técnicas básicas de remuestreo (Montecarlo, Jacknife, Boostrap, …) útiles en estadística.

Estos métodos son cada vez más populares y presentan alternativas fiables a los métodos asintóticos tradicionales, basados en su mayoría en el teorema central del límite. Los métodos ofrecen una alternativa atractiva en muchas aplicaciones para determinar la distribución muestral de los estadísticos de interés. En muchos casos la aproximación es mejor que la asintótica e incluso en los que esta no está disponible, los métodos de remuestreo son la única posibilidad de realizar inferencias.

El curso hará énfasis en la aplicación de los métodos usando los programas R y SPSS o cualquier otra herramienta específica que se considere oportuno.

5. Contenidos

Teoría.

1. Métodos de Monte-Carlo

2. Jacknife

3. Bootstrap

       a. Paramétrico

       b. No paramétrico

4. Tests de permutaciones

5. Tests aleatorizados

6. Aplicación en problemas estadísticos básicos.

7. Aplicaciones en modelización.

8. Aplicaciones en análisis multivariantes.

9. Aplicaciones en Machine Learning.

6. Competencias a adquirir

Específicas.

- Saber aplicar sus conocimientos a su trabajo de una forma profesional y poseer las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro del área de Estadística.

- Tener la capacidad de reunir e interpretar datos de diversas áreas de estudio para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

- Comprender y utilizar el lenguaje estadístico. Adquirir la capacidad para analizar y sintetizar los problemas de los distintos campos de aplicación de la Inferencia Estadística.

.- Desarrollar la capacidad para el aprendizaje autónomo de nuevos conocimientos y técnicas, para el razonamiento crítico y para la transmisión de los conocimientos estadísticos adquiridos en lengua nativa y extranjera.

.- Adquirir la capacidad de comunicación con equipos multidisciplinares en los que el uso de la Estadística juega un papel relevante en la toma de decisiones.

.- Conocer y utilizar diferentes herramientas informáticas de uso común en el ámbito de la Estadística. Gestionar la información disponible de manera óptima.

.- Adquirir la capacidad de adaptación a nuevas situaciones que puedan requerir la mejora o creación de técnicas estadísticas en términos de otras ya conocidas.

.- Adquirir los conocimientos estadísticos necesarios para diseñar adecuadamente una investigación y realizar estudios descriptivos e inferenciales, utilizando las herramientas informáticas más adecuadas.

.- Proponer, analizar, validar e interpretar modelos de situaciones reales utilizando las técnicas estadísticas más adecuadas a los fines que se persigan.

.- Adquirir la capacidad para detectar y modelizar el azar en problemas reales. Distinguir entre método estadístico y razonamiento determinista.

Transversales.

Instrumentales:

  • Capacidad de análisis y síntesis.
  • Resolución de problemas.
  • Conocimientos de informática en el ámbito de estudio.
  • Toma de decisiones.

Personales:

  • Razonamiento crítico.

Sistémicas:

  • Adaptación a nuevas situaciones.

7. Metodologías

-LECCIÓN MAGISTRAL: Donde se presenta la teoría (las diferentes técnicas estadísticas). Se emplearán medios audiovisuales como apoyo.

-DOCENCIA BASADA EN PROBLEMAS PRÁCTICOS simulados o recogidos de las publicaciones científicas que despierten el interés de los alumnos.

-MÉTODOS PRÁCTICOS PARTICIPATIVOS: Se presentará algún trabajo de investigación en el que los alumnos deben participar (en la recogida de datos o en la búsqueda bibliográfica, según proceda, en la grabación en soporte informático y/o en el análisis de los mismos, en la redacción de las conclusiones y en la presentación, en grupo,  de los resultados).

Una parte de este tiempo estará dedicada al manejo del software estadístico y al entrenamiento de la interpretación de las salidas del programa.

-SEMINARIOS METODOLÓGICOS donde se discutan los casos planteados y donde se les enseñe a realizar un estudio crítico de trabajos publicados en revistas científicas y se pondrá en conocimiento del grupo los problemas o sesgos detectados durante la realización de los trabajos.

8. Previsión de Técnicas (Estrategias) Docentes

9. Recursos

Libros de consulta para el alumno.

  • Good, P. I. (2006). Resampling methods. Birkhũser Boston.
  • Efron, B., & Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman & Hall
  • Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans (Vol. 38). Siam.
  • Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann.

Otras referencias bibliográficas, electrónicas o cualquier otro tipo de recurso.

Plataforma Moodle (Studium.usal.es)

Pagina web del departamento: http://biplot.usal.es. (Incluye notas específicas para la signatura)

10. Evaluación

Consideraciones generales.

Para evaluar

Tareas desarrolladas a lo largo del curso.

Un examen final el cual constará de dos partes:

Un examen escrito donde se plantearán preguntas teóricas que tienen como objetivo evaluar la comprensión del alumno en cuanto a los conocimientos que se han conseguido a lo largo del curso. Estas preguntas pueden ser tipo test, preguntas concretas o preguntas que relacionen varios conceptos de diferentes unidades temáticas.

Un examen con ordenador donde el alumno deberá resolver un caso práctico.

Evaluación continuada a lo largo del desarrollo de la signatura.

Criterios de evaluación.

Examen  de test-Teórico-práctico basado en las clases magistrales presenciales (20%),  que será escrito y en una única prueba a final del periodo lectivo, donde se evaluará el nivel de conocimientos. Hasta un  20% podrá realizarse en controles periódicos a lo largo del curso.

 

Examen de prácticas con ordenador  basado en las clases de prácticas con el programa estadístico visto en el curso (20%), esta prueba será escrita y consistirá en preguntas cortas y / o de tipo test.

 

Trabajos de elaboración personal de los alumnos (40%). Donde se valorará la capacidad del alumno para llevar a la práctica los métodos aprendidos, el manejo del programa estadístico, la elaboración del informes y la bibliografía consultada, así como las competencias instrumentales, interpersonales y sistémicas, así como las habilidades y actitudes.

Instrumentos de evaluación.

Pruebas escritas de conocimientos teóricos.

Evaluación continua de los trabajos realizados durante el curso y de su exposición y debate.

Evaluación continua utilizando Studium.

Manejo de un software de estadística. Ordenador.

Recomendaciones para la evaluación.

Utilizar la bibliografía para afianzar conocimientos y, si es necesario, adquirir una mayor destreza en la materia.

Plantear las posibles dudas que tenga el alumno en clase, tutorías, seminarios.

Realizar las tareas propuestas a lo largo del curso.

Recomendaciones para la recuperación.

El alumno podrá recuperar aquellas partes de la evaluación (tareas, examen ordenador y examen escrito) que no haya superado en el curso.